
FIH zürich

Data for Robotics

Davide Liconti Prof. Dr. Robert Katzschmann

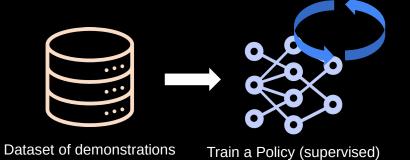
03-11-2025

Toshimitsu et al., Getting the ball rolling, Humanoids (2023)

Agenda

- 1. Why do we need data
- 2. Data sources for Robotic Manipulation
- 3. Teleoperation
- 4. Human Data
- 5. Simulation Data
- 6. Alternative Approaches

Approaches to Autonomy

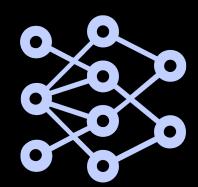

Reinforcement Learning

Learn by trial-and-error

Agent Environment Reward State

Imitation Learning

Learn from Expert Demonstrations



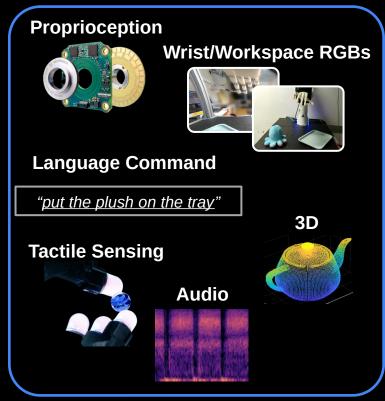
Imitation Learning Preview

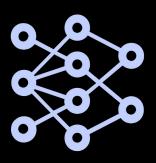
InputObservations

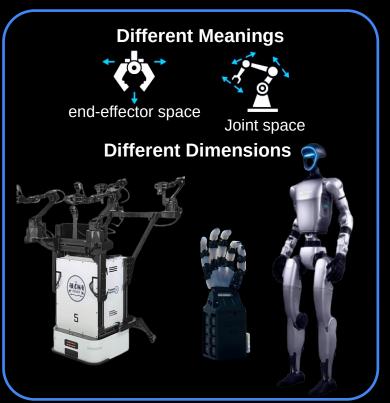
Output *Actions*

Imitation learning is a *supervised learning* approach where an agent learns to **perform tasks** or **acquire new skills** by **observing** and **mimicking** demonstrations provided by an expert.

How does this data look like?






Robotics data is highly multimodal

Observations Actions

Robotics data are not much

Comparing language datasets ($\it{GPT-2}$, $\it{LLama3}$) to robotics dataset (\it{OXE} , $\it{\pi}$) assuming 238 words/minute, 1.33 tokens/word

We lack the internet for robotics

https://x.com/kvablack/status/1856373781603987655

Kevin Black (PI) CoRL 2024 workshop

Lack of data in robotics

"Large data solved Language, Large data solved Vision, Large data <u>will</u> solve Robotics" When?

The Common Crawl data set contains approximately 6 billion web documents stored on a publicly accessible, scalable computer

A massive, open-source collection of 5.85 billion image-text pairs used to train large language and vision models

The Bitter Lesson

"Scaling computation beats humandesigned knowledge in the long run"

http://www.incompleteideas.net/IncIdeas/BitterLesson.html7

Scaling Laws for LLMs

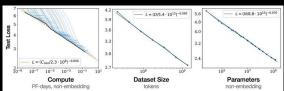


Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

https://arxiv.org/pdf/2001.08361

Data Sources for Robotic Manipulation

Human Data

Simulation

Scalability

Quality

Teleoperation is the remote control of a machine or robotic system, allowing a human operator to perform tasks from a distance by sending commands and receiving feedback like video and sensor data

Requirements

- Real-time control: low latency (<100 ms) for stable teleop.
- Feedback loop: The operator need to have as many information as the robot and environment states

Types

Direct Teleoperation

Indirect Teleoperation

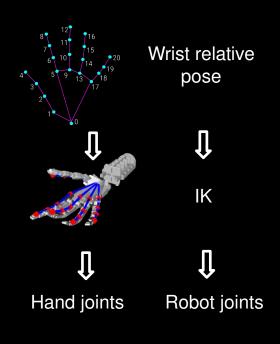
High Level Teleoperation

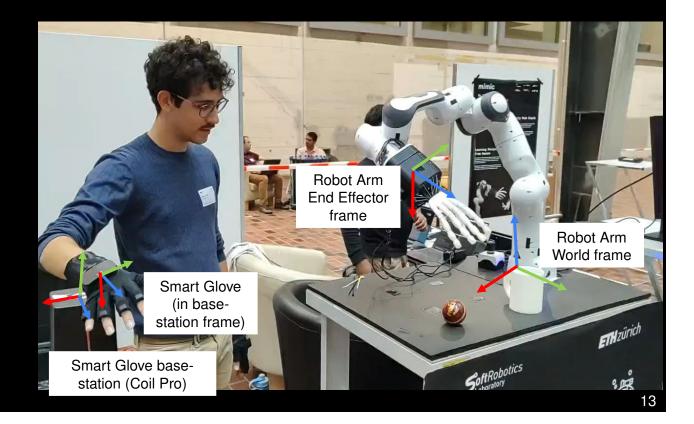
Direct Teleoperation

Leader-Follower systems, directly send joint values to the other robot

Indirect Teleoperation

Control the robot with another system, and retarget to its joint values




Indirect Teleoperation

High Level Teleoperation

Human gives goal- or task-level commands (e.g. keypoints), robot handles low-level control.

Haptics

Including tactile and kinesthetic feedback for more accurate and intuitive control

Competitions

ANA Avatar XPRIZE Finals: Winning Team NimbRo

Real world teleoperation data are the best data you can get for your specific task. No embodiment gap but is expensive to get.

RealMan launches robotics data training center in Beijing

By The Robot Report Staff | • August 29, 2025

Teleoperation as Teleoperation

For some applications, teleoperation is not a mean to collect data, but rather the end goal itself. That is when you want **full control** in dangerous or critical environments

Teleoperation as Teleoperation

For some applications, teleoperation is not a mean to collect data, but rather the end goal itself. That is when you want **full control** in dangerous or critical environments

Advantages

Scale – cheap to get.

EG® 4D

Walking

Cooking

Limitations

Unlabeled – they don't come with actions need hand pose estimation

Shopping

Bridging the **human-robot** embodiment gap is still an open **Social interaction** problem.

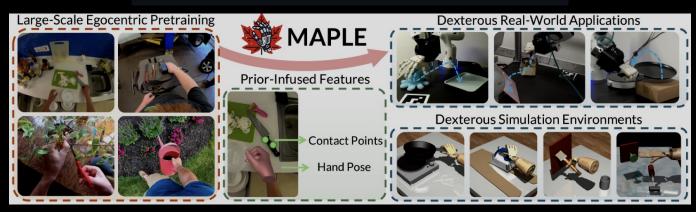
Ego4D dataset

How to exploit human data for robotics applications?

Explicit Approaches

Edit human videos with inpainting and overlay robot

Masquerade: Learning from In-the-wild Human Videos using Data-Editing https://arxiv.org/pdf/2508.09976

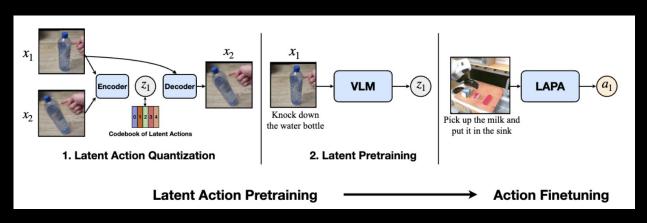


How to exploit human data for robotics applications?

Implicit Approaches

Learn features from dexterous manipulation priors from egocentric videos for downstream dexterous robotic tasks

MAPLE: Encoding Dexterous Robotic Manipulation Priors Learned From Egocentric Videos https://arxiv.org/html/2504.06084v1



How to exploit human data for robotics applications?

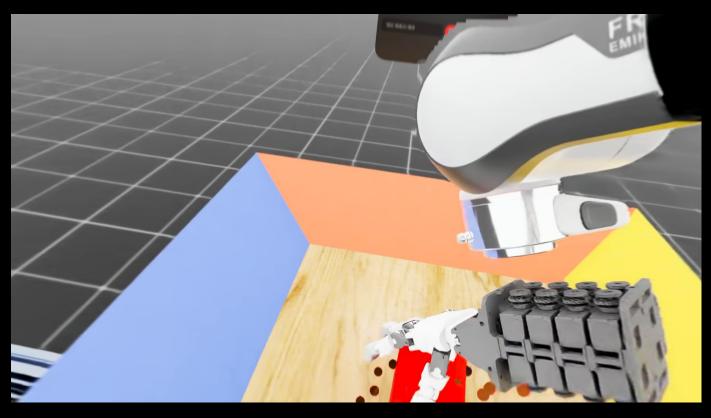
Implicit Approaches

Extract pseudo latent actions from large scale human videos

LAPA: Latent Action Pretraining from Videos https://arxiv.org/pdf/2410.11758

Advantages

- Can simulate parallel environments, the limit is not time but rather compute. (Easy to simulate augmentation, both for trajectories and visuals)
- Recent rendering techniques made them also suitable to use them for visuomotor policies (e.g. Gaussian Splatting)
- Don't need physical access to robots, can collect data anywhere.


Limitations

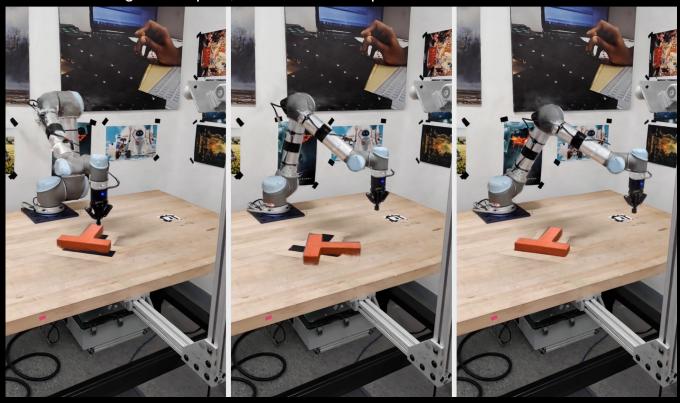
• Bridging the **sim to real gap** for both physics and renderings

Teleoperation in Simulation

 Don't need physical access to robots, can collect data anywhere.

DART: Dexterous Augmented Reality Teleoperation Platform for Large-Scale Robot Data Collection in Simulation

https://openreview.net/pdf/b0393e5ce2ed5eab3b8 9e05d5e6855b36ef4875f.pdf

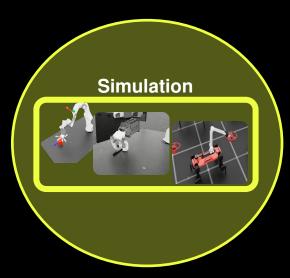


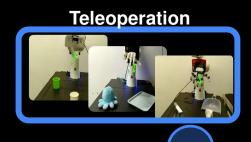
With recent neural rendering techniques, simulations are photorealistic

SplatSim https://splatsim.github.io

Simulation can be used for data augmentation

DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning https://arxiv.org/pdf/2410.24185



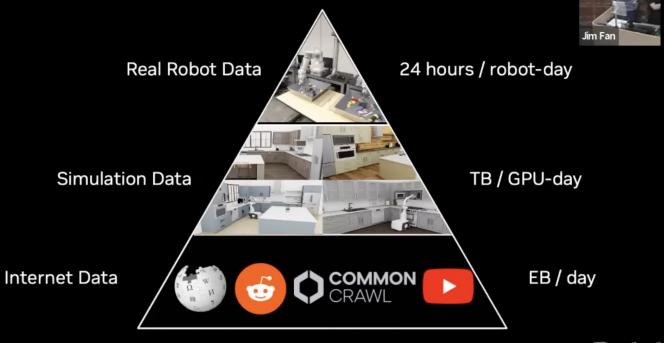

Data Sources for Robotic Manipulation

Scalability

Quality

Alternative Approaches: Hybrid

UMI employs hand-held grippers coupled with careful interface design to enable portable, low-cost, and information-rich data collection for challenging bimanual and dynamic manipulation demonstrations.



Others call it "Data Pyramid"

Data Pyramid

CS 194/294-196 (LLM Agents) - Lecture 9, Jim Fan

Timestamp: 00:16:00

Key Takeaways

- Scaling data was key for language and vision
- Data in robotics manipulation is highly multimodal and diverse
- Teleoperation is very valuable source of data but expensive
- More scalable alternatives are human and simulation data, but are harder to use

