

Reinforcement learning

Chenyu Yang Robert Katzschmann

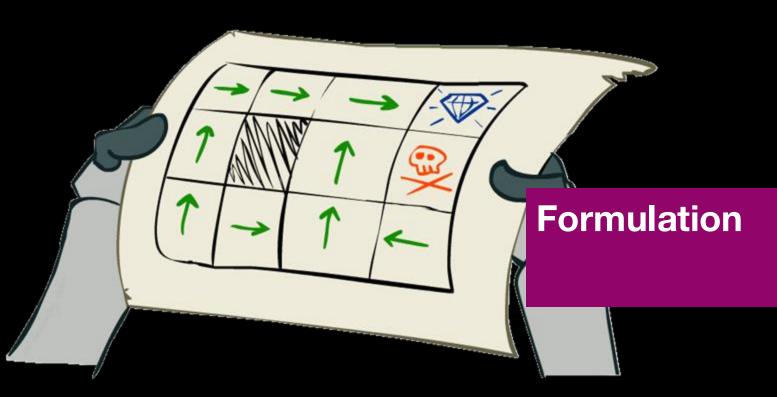
Soft Robotics Lab 27/10/2025

Toshimitsu et al., Getting the ball rolling, Humanoids (2023)

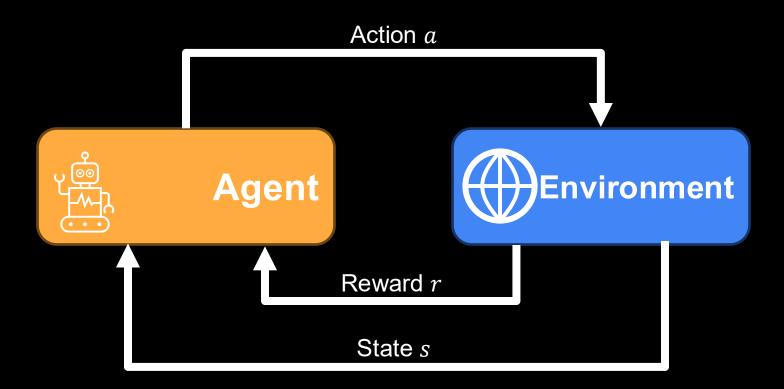
Plan for Today

- Formulation
- Algorithms
- Practice in Robotics

TIH zürich



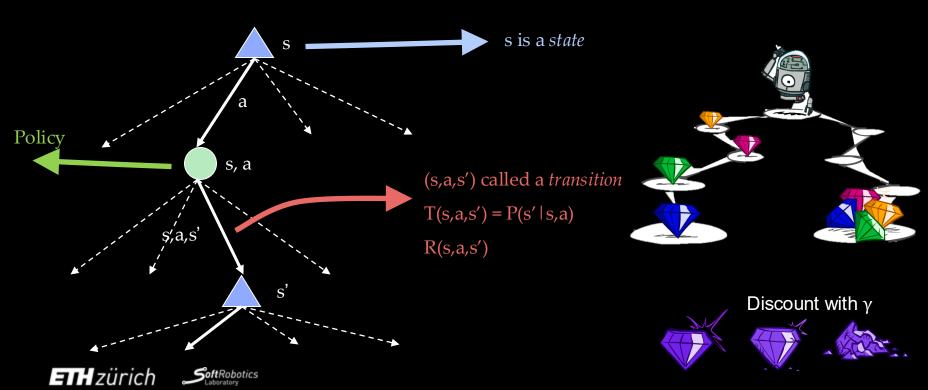
Definitions



Terminology & notation Action a **Environment** Policy $\pi_{\theta}(a|o)$ Observation o High reward Reward r

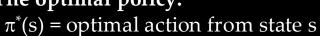
The Goal of RL

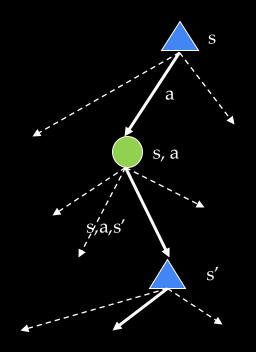
• Maximize reward in the interaction with the environment (Markov decision process)



Value and Bellman Equations

- The value (utility) of a state s:
 - $V^*(s)$ = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - $Q^*(s,a)$ = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:





s is a state

(s, a) is a *q-state*

(s,a,s') is a transition

Value and Bellman Equations

• The value (utility) of a state s:

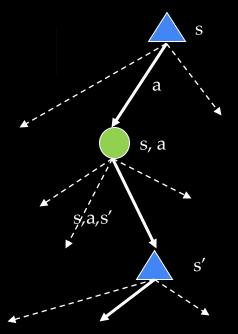
$$V^*(s) = \max_{a} Q^*(s, a)$$

The value (utility) of a q-state (s,a):

$$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

The optimal policy:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$



s is a state

(s, a) is a *q-state*

(s,a,s') is a *transition*

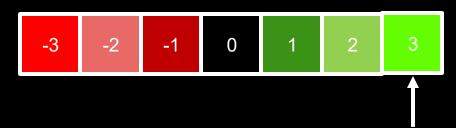
Example 1d grid world

- State space:
 - Position of agent $s \in \{-3, -2, -1, 0, 1, 2, 3\}$
 - Target position $g \in \{-3, 3\}$

- Action space:
 - Left / Stay / Right $a \in \{-1, 0, 1\}$
- Dynamics:
 - \circ s' = clip(s + a, -3, 3) with probability 0.9
 - S' = S

with probability 0.1

- Rewards:
 - \circ r(s, a) = 3 |g s| |a|



Example 1d grid world

Suppose fixed goal g=3

- Bootstrap on value function

Value Iteration: Step 0

To learn about value iteration, check Dynamic Programming and Optimal Control

- Q values

Example 1d grid world

What happens if we set new target once it's achieved?

$$g' = -g$$
 if $g=s$

Value Iteration (Iteration 0)

g=+3	0.00	0.00	0.00	0.00	0.00	0.00	0.00
g=-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Does optimal policy reach the goal?

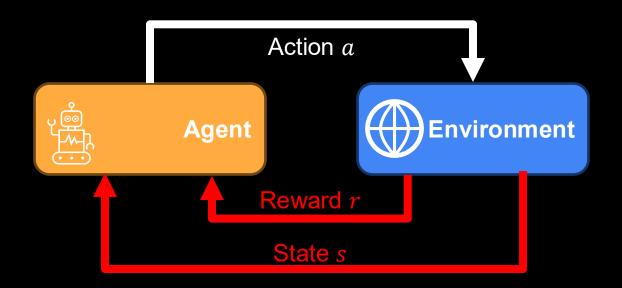
How to fix the problem?

No

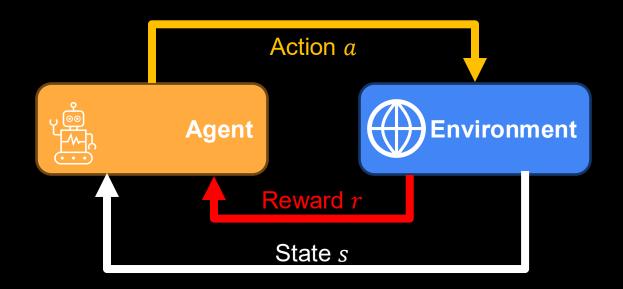
- 1. Success reward
- 2. End episode

FIH zürich

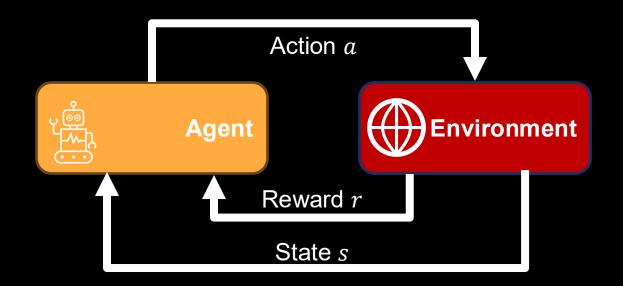
Stochasticity: Rewards and state transitions may be random and unknown



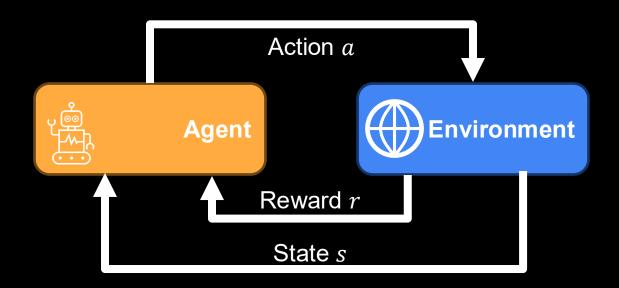
Credit assignment: Reward r_t may not directly depend on action a_t



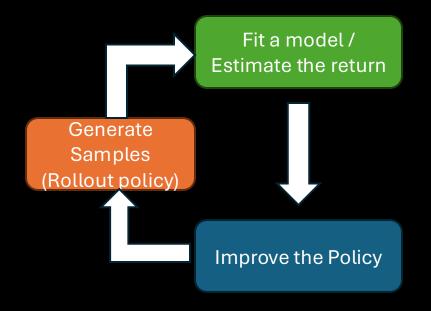
Nondifferentiable: Can't backprop through world; can't compute $\frac{\partial r}{\partial a}$ or $\frac{\partial x}{\partial a}$



Nonstationary: What the agent experiences depends on how it acts



The anatomy of a reinforcement learning algorithm

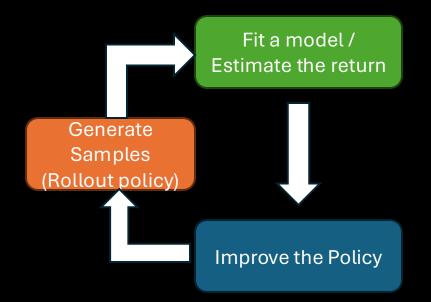


Learn the dynamics model

- p(s'|s,a)
- r(s,a)

Optimal control from the model

Value-function-based algorithms



Fit V(s) or Q(s,a).

$$\pi(s) = \operatorname{argmax}_a Q(s, a)$$
.

Policy Gradient

Fit a model /
Estimate the return

Evaluate total returns of episodes τ

$$D = \sum_{\alpha \in \alpha} \alpha$$

To learn about value iteration, check Probabilistic AI class

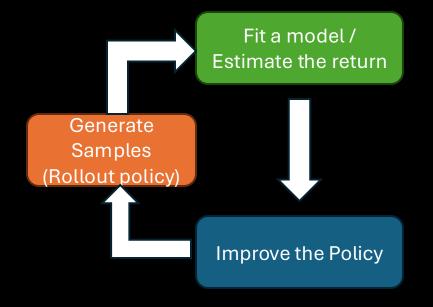
Improve the Policy

Estimate the gradient to the policy

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} E \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$



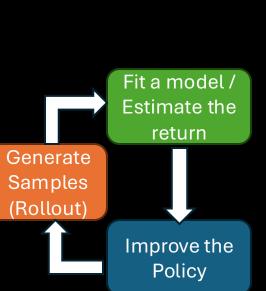
Actor-critic



A deep model (the "critic")

Another deep model (the "actor")

Actor-critic: PPO vs SAC



PPO (Policy Gradient)

DDPG / SAC (Value Based)

Fit V(s)Evaluate Advantages

Estimate the **clipped** gradient to the policy

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} E \left| \sum_{t} A(\mathbf{s}_{t}, \mathbf{a}_{t}) \right|$$

Fit Q(s, a)

policy = argmax Q

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} E \left[\sum_{t} A(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

Tradeoffs Between Algorithms

Stability

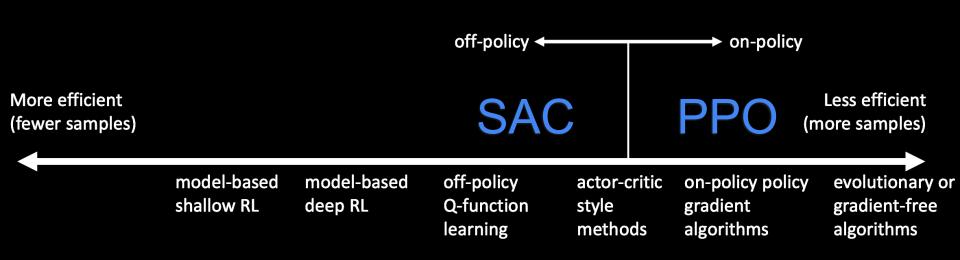
Policy Optimization

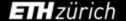
Biases in Bellman error optimization.

- Bootstrapping Bias (Baird's counterexample)
- Overestimation Bias
- Nonstationary Targets

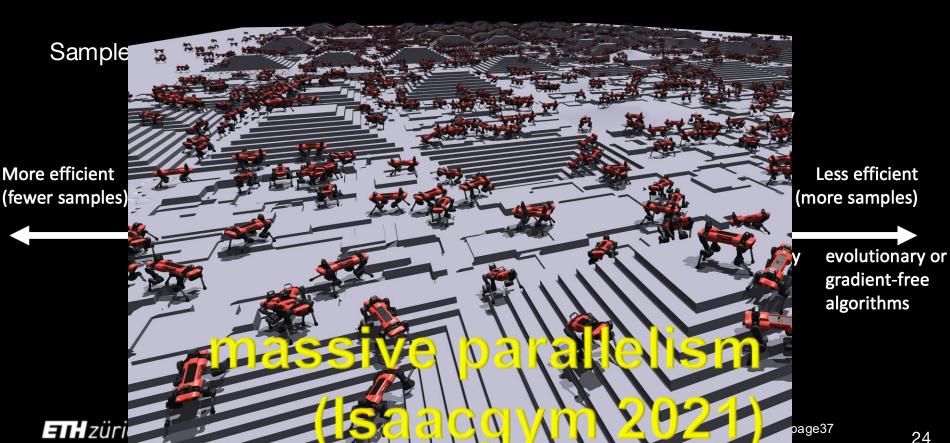
Tradeoffs Between Algorithms

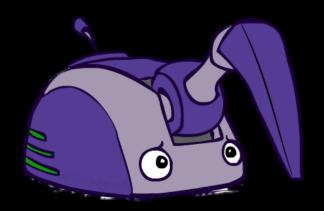
Sample Efficiency





Why does everyone still use PPO?



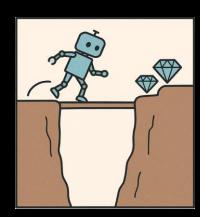


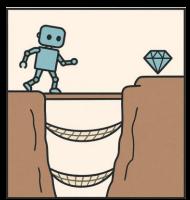
Practices in robotics

Curriculum Learning

Examples:

- Action smoothness:
 Low penalty weight -> high penalty weight
- Perception:Low noise -> high Noise
- Locomotion:
 Easy terrain -> hard terrain
- Manipulation:
 Easy success threshold -> hard success threshold





Sim or Real

SoftRobotics Laboratory

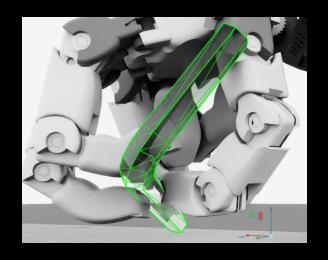
Sim or Real

Simulated data

- Cheap
- Fast
- Scalable
- Safe
- Labeled
- Not beholden to real-world probability distributions

Difficulty of using simulated data

Physics simulators make big assumptions to run faster



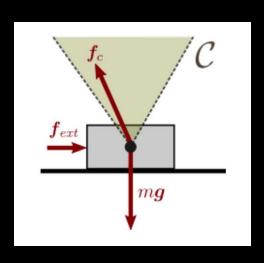
Convex Collision Check

FPS: 101.57, Frame time: 9.85 ms NVIDIA GeForce RTX 4090 D: 1.3 GiB used, 19.1 GiB available Process Memory: 7.4 GiB used, 115.0 GiB available 1280x720

Discrete time

Difficulty of using simulated data

Physics simulators make big assumptions to run faster Accurate physics model means more parameters to identify



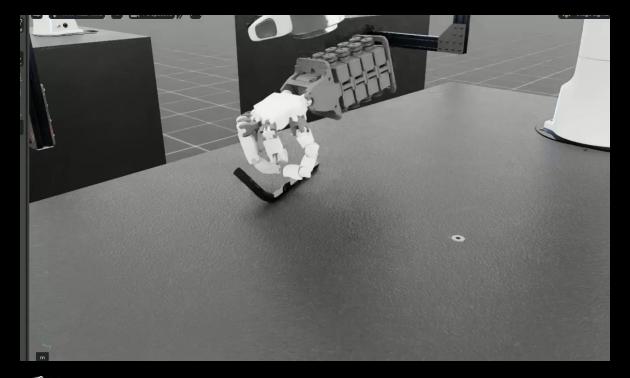
- Friction Coefficient?
- Inertia?
- Damping?
- Spring constants?



Coulomb friction Rigid bodies

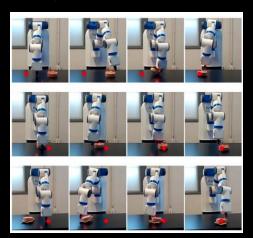
Difficulty of using simulated data

Neural nets will exploit/overfit to differences in data distributions



Increase the diversity in simulation domains so that the real world **may** look like another simulator.

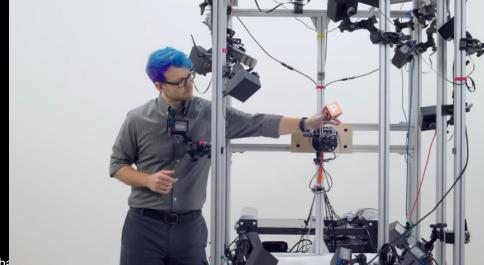
For dynamics



Parameter	Range			
Link Mass	$[0.25, 4] \times$ default mass of each link			
Joint Damping	$[0.2, 20] \times$ default damping of each joint			
Puck Mass	[0.1, 0.4]kg			
Puck Friction	[0.1, 5]			
Puck Damping	[0.01, 0.2]Ns/m			
Table Height	[0.73, 0.77]m			
Controller Gains	$[0.5, 2] \times$ default gains			
Action Timestep λ	$[125, 1000]s^{-1}$			

Increase the diversity in simulation domains so that the real world **may** look like another simulator.

For Dexterity



SoftRobotics

resource: Learning dexterous in-hand manipulation

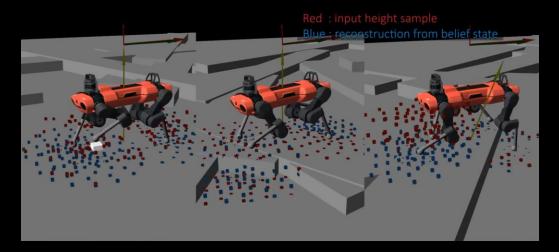
Increase the diversity in simulation domains so that the real world **may** look like another simulator.

For height scans (point clouds)

Large noise

Small noise

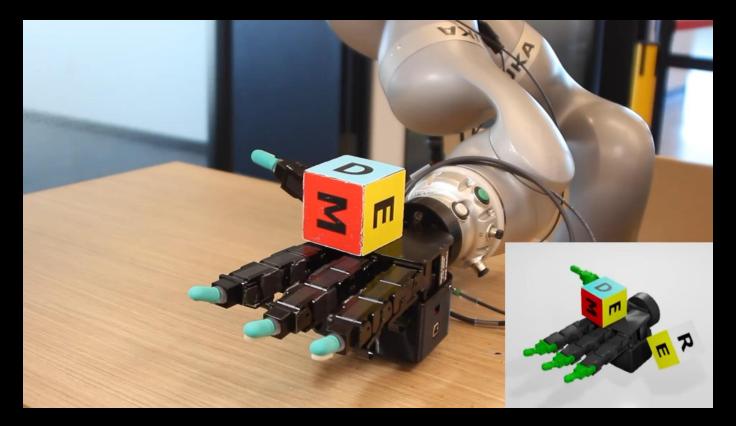
Large offset



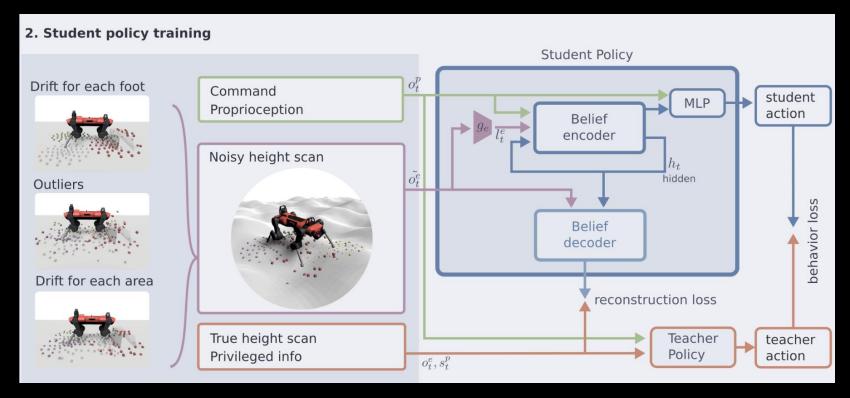
Increase the diversity in simulation domains so that the real world **may** look like another simulator.

For RGB images

Transfer of Agile In-Hand Manipulation from Simulation to Reality



Teacher student distillation



Acknowledgements and Useful links

Randomization and the reality gap: how to transfer robotic policies from sim to real https://youtu.be/ac_W9lgKX2c?si=kYlix7K6aDBd5a0E

Acknowledgements

- Berkeley CS285 Sergey Levine
- Berkeley CS188 Summer 2024

